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Abstract. The SU(2)-covariant conservation law D p J z  = 0 is discussed for various types 
of Euclidean non-vanishing external current J z .  The classification of J z  is performed in 
the gauge- and Euclidean-invariant way. It is shown that the intrinsically non-Abelian 
current can be arbitrary-no restriction is imposed on it by an interaction with a gauge 
field system. However the Abelian current has to be conserved. A decomposition of the 
gauge field potential A: is also performed in order to extract dynamical degrees of freedom 
from the non-dynamical ones. 

1. Introduction 

Non-Abelian gauge field theory with external currents introduces significant difficulties 
either on the classical or the quantum level. Recent papers on quantisation of this 
theory (Cabo and Shabad 1986, Przeszowski 1988) suggest that a basic change in our 
intuition is required. Here we would like to deal with. a new interpretation of the 
so-called covariant conservation law for external current. We will consider the SU( 2) 
gauge group and four-dimensional Euclidean spacetime. We suppose that the external 
current J z  is real valued and arbitrary. 

The classical dynamics is given by a non-homogeneous Yang-Mills equation 

DzbFiy  = JZ (1) 

where 

F t Y  = a,A: -a,A; + geab'ALA', 

DEb = SRba,  + gERcbAfL. 

The above system of partial differential equations has a non-trivial consistency condition 

D ~ J ;  = o  (2) 

which is usually known as the covariant conservation law for external current J z .  This 
name is misleading because it suggests that there is some restriction to be put on J z  
in order to couple it unambiguously to a non-Abelian field A i  (for example, Arodi 
1983, Lai and Oh 1984, German 1984). Such a limitation really takes place either 
when g - 0  or in an Abelian case where instead of (2) one has 

d,J; = 0 or a,J, = 0 (3) 
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and there is no doubt that external current must be conserved. However, in the truly 
non-Abelian case one must remember that a covariant derivative contains a gauge field 
A; and one should not treat (2) perturbatively (in g). In this paper we show how 
equation (2) may be reinterpreted as a constraint on gauge field degrees of freedom. 
Thus we will conclude that an almost arbitrary external current J :  may be coupled to 
a non-Abelian gauge field system in a consistent way. 

Our method of presentation is as follows. First we find that all non-zero external 
currents fall into one of three possible classes. Every class is characterised in a gauge- 
and Euclidean-invariant way. Then we transform an invariant description of a class 
into some properties of any external current which belongs to this class. This deals 
with classification of external currents. Next we parametrise an arbitrary gauge field 
potential A: in such a way that some new degrees of freedom are constrained by the 
covariant conservation law (2).  Every class of JE is discussed separately and for clarity 
most calculational details are omitted in the main presentation; they are given in the 
appendix. 

2. Generic external current 

Our equation of interest may be rewritten as 

a,J; + gEabCA:J: = 0. (2') 

Thus if we focus our attention on the second truly non-Abelian term then our problem 
becomes algebraic and local. Thus we will not write down explicitly the spacetime 
dependence of J i  and A:, but we will presuppose that our analysis is to be carried 
out separately at every point. Furthermore, if the external current is smooth enough 
so that all final formulae exist everywhere, then our solution will become global. 

We would like to discuss various cases of possible non-Abelian external current 
J :  in a gauge- and Euclidean-covariant way: thus the following symmetric matrices 
will appear frequently: 

K a b =  JCJ:  ( 4 a )  

L,, = J ;  J :  . (4b) 
Though matrices K and II have different dimensions they have the same non-zero 
eigenvalues: thus in the SU(2) case in four dimensions we have for every JZ 

DetII=O ( 5 )  
(compare equation (A3) in the appendix). However, the other matrix K may have any 
number of non-zero eigenvalues. We will specify types of non-Abelian external current 
.I: by the number of non-zero eigenvalues of K. 

First we will consider a generic case when 

Det M # 0. (6a)  
Then II has only one zero eigenvalue or equivalently there is a non-zero eigenvector n,: 

n,L,, = L,,n, = 0 

Further, from (6b), one obtains 

n 2  = n,n, > 0. 

nPLwYJ: = n,JLKba = O  
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and according to ( 6 a )  one concludes that 

n,J; = 0. ( 6 ~ )  
However, one should not confuse this property ( 6 c )  of arbitrary J ;  with any constraint 
on it. So far there is no restriction put on external current. Equation ( 6 c )  just says that 
any four three-dimensional (gauge) vectors must be linearly dependent. 

Now we will solve equation ( 2 )  by pointing out which part of A; is constrained. 
We notice that gauge field A; can be decomposed as 

A ;  = aan, + D:,,(Sab + E " ~ ~ N ~ ) J :  

Df,,LUP = L,,D:,, = 6 , p  - n,np/n2 

Snb =i (JZAL +JLAE) (7c) 

E ~ ~ ~ N ~  = i ( J L A ;  - J ; A L )  ( 7 d )  

a" = A ; n , / n 2  ( 7 e )  

( 7 a )  

( 7 b )  

where 

(for details see the appendix). Thus instead of A; we may treat a", Sab, N" as 
independent gauge field degrees of freedom. One should remember that the external 
current JE is a previously given quantity! 

Accordingly our consistency condition ( 2 )  may be solved explicitly: 

N" = - (1 /2g )d& (8) 
and our conclusion is that the covariant conservation law for non-Abelian external 
current ( J : )  gives a constraint on gauge field degrees of freedom ( N " )  if this current 
is generic, e.g. if condition ( 6 a )  is satisfied. 

3. Non-generic external currents 

Now we will discuss cases of degenerate external currents. Let us call .l; non-generic 
if condition ( 6 a )  is not satisfied, e.g. when 

Det K = 0. ( 9 )  
Because we are interested in non-zero J ; ,  from ( 9 )  we conclude that the matrix K may 
have either one or two zero eigenvalues. These two possibilities will be discussed in 
sequence. For clarity we will omit all intermediate calculations, which can be found 
in the appendix. 

3.1. One zero eigenvalue 

Let us take the non-zero colour vector a" as an eigenvector with a zero eigenvalue: 

a a K R b  = K a b a b  = O  a'= a"a" > 0. (10) 
Accordingly from the observation 

Det( K R b  + a a a b )  # 0 

one may deduce that there is a matrix A;b with properties 
~ " b ~ p  = A : ~ K ~ C  = 6"' - a a a c / a 2  

a"ATb = Aybab G 0. 
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Because the matrix L has the same non-zero eigenvalues as the matrix K, one may find 
two orthogonal (Euclidean) eigenvectors n, and m, : 

nrLPv = L,,n, = 0 

mwLlLv = L,,m, = 0 

m,n, = 0 

m2 = m,m, > o n2 = n,n, > 0. 

Furthermore if one notices that 

then one will obtain a matrix D2,” with properties: 

The degeneracy of external current prohibits us from transferring immediately the 
properties ( l o ) ,  (13a) ,  (136) into the appropriate relations for JE.  However, if we 
restrict our discussion to real-valued objects, then by virtue of 

aaKaba = aa J z  a J E  = 0 

n,L,,n, = n,Jzn,J; = 0 

m,L,,m, = m,Jzm,Jz=O 

we will obtain the following properties of J E :  

Actually we may derive these equations after some manipulation of equations ( l o ) ,  
(12a) ,  (13a) ,  (13b) and (15a)  even for complex-valued objects (details can be found 
in the appendix). 

So far our discussion has dealt with the structure of external current. We have 
shown that the actual class of .T; may be equivalently defined either by equation (16) 
or by (10) and ( 1 3 ) .  We stress that these properties of JE (16) should not be confused 
with constraints induced by an interaction with a gauge field system. 

Now we are in a position to solve the covariant conservation law ( 1 )  for the present 
case of J Z .  First we notice that the gauge field potential A: may be parametrised as 

A ; =  D 2 , , { S : ” b + ( ( 8 a d + a a a d / a 2 ) ~ d b c N c } J ~ + a a m p + P a n r  (17a)  
where 

a‘ = AZn,/n’ 

P a  = A;m,/m’. 
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Thus we may treat CY", p", S p b ,  N" as independent gauge field degrees of freedom. 
Accordingly from equation ( 2 )  we have again a constraint on gauge fields 

N" = -( 1/2g)d,J: (8) 
and no restriction on external current. 

3.2. Two zero eigenvalues 

Here we will deal with another class of non-generic external current J:-when matrix 
H has two zero eigenvalues. Now we choose a" and b" as the appropriate orthogonal 
eigenvectors: 

a 4 K 4 b  = K a b a b  = O  ( 1 8 a )  

b"Kab  = K a b b b  = O  (186)  

aabb = 0 (18c )  
a 2  = a 4 a 4  > 0 b2 = b"b" > 0. 

Similarly to the previous case one proves that here a 'reciprocal' matrix A;b has the 
following properties: 

K"bA,bc=AgbKbC = S a c - a 4 q b / a 2 - b " b b / b 2  ( 1 9 a )  
a"A:b = A f b a b  z 0 (19b)  

b4A:b = Aibbb  0. (19c )  
Besides, matrix [I has three zero eigenvalues; thus there are three orthogonal eigenvec- 
tors n,, m,, P ,  

nPLFv = Lrvnv = 0 

m,L,, = L,,,m, = 0 (206)  

P,L,u = L,,P" = 0 (20c )  

m,n, = 0 P,nr = 0 m d ,  = 0 ( 2 0 d )  
m2 = m,m, > o n2 = n,n, > o 

Det(L,, + n,n, + m,m, + P,P")  + 0 

L@uD3vA = D3fiuLvA = 6 p A -  n p n A / n 2 -  m,mA/m2-p,pA/p2 ( 2 1 a )  

D3pyn,, = n,D3,, 0 (21b)  
D3,"m,, = m,D3,,, = 0 (21c )  
D3,YPY = P Z D 3 , V  = 0. ( 2 1 4  

P 2  = P,P, > 0. 

With the help of these vectors one may find from the observation 

that there exists a matrix D3," which satisfies the following properties: 

Furthermore, from the properties of the matrices H and O_ we want to extract appropriate 
relations for J Z .  For a real-valued external current J l  one may easily arrive at 

( 2 2 a )  
(22b)  

n,JE = m,Ji = p , J l =  0 

a4JE = b"Jl = 0. 
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At present we do not have proof that these properties can be obtained for a complex- 
valued J Z ;  we leave this as an open question. 

In order to solve the covariant conservation law ( 2 )  we will introduce the following 
parametrisation of the gauge field potential A ; :  
A: = D , , , { S P b + ( S a d + a a a d / a 2 +  babd /b2)EdbcNc}JL+aam,  + P a n ,  + yapa (23a)  

where 
S F b  = (Sa' - a a a c / a 2  - bab'/ b2 )Scd(  S d b  - ada b / a 2  - bdbb/  b2 )  (23b)  
N L a  = a b N b / a 2 a a  + b b N b /  b2ba = nlaa  + n2ba ( 2 3 ~ )  

p a  = A ; m , / m 2  W e )  

a a  = A t n , / n 2  ( 2 3 d )  

Y a  = AtP,/P2P ( 2 3 f )  

n ,  = -(1/2ga2)a,J;aa (24a)  

n2 = -( 1/2gb2)a,J;ba (24b)  

a,J;Eabcabbc = 0.  (24c)  

and treat c y a ,  pa, y a ,  S p b ,  n , ,  n ,  as independent gauge field degrees of freedom. 
Looking at ( 2 )  one finds that n, and n2 are dynamically constrained: 

and that there is also a constraint on JE 

4. Conclusions 

Finally one arrives at the apparently surprising conclusion that for arbitrary non- 
Abelian external current the covariant conservation law imposes constraints on gauge 
field degrees of freedom. External current JZ may be called intrinsically non-Abelian 
if the matrix K (4a)  has at least two non-zero eigenvalues. Otherwise JE can be called 
Abelian (Jackiw and Rossi 1980, Kiskis 1980, Weiss 1980) because it factorises by 
means of a suitable gauge transformation 

J ; ( x )  = A a ( x ) i , ( x )  A ~ ( x ) A ~ ( x )  = 1 .  (25)  

A " ( x )  = R a b ( x ) h b (  x,,) 

Morever if the colour vector A a  is a smooth function then its spacetime dependence 
may be gauge transformed by a non-singular 174 matrix 

(26a)  
where 

RbaRbC = 6 ° C  ~ a m ~ b n ~ c ~ ~ a b c  = &mnp. 

With the same matrix R one may gauge transform the gauge field potential A; 

A ~ ( x )  = R (x )A; (  x ) - (  1 / 2 g ) ~  a b ' R d b ( ~ ) d , R d ' ( ~ ) .  (26b)  
In terms of these new variables equation (2) may be rewritten as 

ar j ,=o  
j,A;(8abA'A' - A "A b ,  = 0. 

The above observation shows explicitly that the covariant conservation law (2) produces 
a true constraint on the external current only when this current is Abelian. 
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Overall this allows the general conclusion that if one tests non-Abelian problems 
(like equation (2))  with Abelian objects (like ( 2 5 ) )  then some singularities may arise 
and j n a l  results are not representative for generic non-Abelian objects. 

Finally, we would like to mention that other conservation laws may have a different 
interpretation. If both entities are dynamical, then the final result will depend on the 
actual physical content. For example the SU(N)  non-Abelian Gauss law has been 
solved as a constraint on gauge field momenta E ;  keeping gauge field potentials Af 
arbitrary (Baluni and Grossman 1978, Das et al 1979, Goldstone and Jackiw 1978, 
Izergin et a1 1979). 

Appendix 

Here we present essential details of calculations, which have been omitted in the main 
part of the paper. First we notice that for any symmetric 4 x 4 matrix X 

( A l a )  Det X = &(Tr X)“ - f(Tr X4) +4(Tr X)(Tr X3) + Q(Tr X2)’ - f(Tr X’)(Tr X)’ 

and for any symmetric 3 x 3 matrix V 
Det V=d(TrY)3+4(TrV3)-i(TrV)(TrY’). 

Because Det and Tr operations are invariant for a diagonalisation procedure, then the 
above equations can be easily proved by a direct calculation if matrices X and V are 
diagonal. Secondly from the definitions ( 4 a )  and ( 4 b )  we have equality of traces for 
matrices K and IL 

Tr(IL“) = Tr(K”) n = 1,. . . . (‘42) 
Now we may take the case of generic external current when equations (6a)  and 

( 6 6 )  are fulfilled. Let us consider a new Euclidean matrix L,, + n,n, which is already 
non-singular: 

Det(L,, + n,n,) = n’ Det( K a b )  # 0 (‘43) 

because, due to ( 6 b )  and (A2), we have 

Det(L,, + n,n,) 

= &[ Tr [I + n 2 ] 4  - f [  Tr IL4 + ( n ’)“I + 4[ Tr [I + n2][Tr IL3 + ( n2)3 ]  

+ Q[Tr IL’ + (n)’]’ - $[Tr 11’ + (n’)’][Tr IL + n2]’ 

= {&(Tr K)4-f(Tr K4)+$(Tr K)(Tr K3)+Q(TrK2)2-f(Tr K’)(TrK)’} 

+{b(Tr K)3+f(TrK3)-i(TrK)(Tr K’)}n2.  

According to (Ala )  we find that the first curly bracket vanishes identically as a 
four-dimensional determinant of a three-dimensional matrix. Yet from (A1 b )  we learn 
that the second curly bracket gives a three-dimensional determinant of K which, by 
assumption, is different from zero. 

Furthermore, due to the non-singularity of matrix L,,+n,n, we may define a 
symmetric matrix Ill’,” by the reciprocity relations 

(A4a) ( L , Y +  n , n ” / n 2 ) ( ~ : v , +  n,n,ln2) = s,, 
( ~ : , , + n , n , / n ’ ) ( ~ ” , + n , n , / n ’ )  = asp. (A4b) 
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Let us multiply the first equation by n, and the second one by n,; then according to 
(6b) we amve at 

n,D:+ + n, = n, 
Thus we have following properties of D:,,: 

D:,,n, + n, = n,. 

n,D:,, = D:pvnv = 0 

D:,,L, = L , ~ D : ~ ~  = a,, - n,n,/n2. 

('45) 

(76) 

and equations (A4a) and (A4b) are equivalent to 

We clearly see that the matrix exists as long as equation (A3) is satisfied. 
Finally one finds a decomposition of arbitrary A;: 

A ;  = A " , , , n , / n 2 + ( S , , - n , n , / n 2 ) A ~  
= Azn,n,/ n' + Dl',, L , , d z  
= aan ,  + D:,,J~,J;A; 
= a"n, + D:,,(s"~ + E ~ ~ ~ N ~ ) J :  

where Sob, N",  a" are given by ( 7 b ) ,  (7c) and (7d) respectively. This completes our 
calculations in the generic case and we turn to a degenerate one. 

First we suppose that matrix K has one zero eigenvalue (10); thus we can find 

Det( K ab + a a a b )  
=~[TrItd+a2]3+f[TrIM3+(a2)3]-b[TrK+a'][TrK'+(a2)2] 
={~(TrK)3+~(Tr~3) -~ (TrD6) (TrK2)}+~a2{(TrK)2-TrK2}#0 .  (A6) 

The first curly bracket vanishes because it is equal to Det K, while the second one is 
non-zero if there are at least two non-zero eigenvalues. Thus one may define matrix 
A;b by the reciprocity condition 

( K  Ob + a"a b /  a2)(Ap + a hac/ a' )  = ( A;b + a"a b /  a')( K bc + a b a c / a 2 )  = 8"' (A71 

(12a) 

and one can easily derive the following properties of A;b: 
K " ~ A $  = A Y ~ K ~ C  = 8"' - a a a c / a 2  

aaA;lb=Lj;rbab=0. (126) 

Det( L,, + m,m, + n,n,)  = $n2m2[(Tr  K)'-Tr K2] # 0. 

Furthermore, from equations (13) and (AI) one may prove that 

Thus if one defines matrix D2,,, by another reciprocity condition 

(L,, + n,n,/ n2 + m,m,/ m 2 ) (  D f y p  + n v n p /  nz + m,m,/ m Z )  

(A9a) 
then one will easily arrive at the properties (15a-c). 

Up until now the actual analysis has been performed along similar lines to the 
analysis for generic external current. However, if one wants to find properties of 
external current then one encounters obstacles connected with the degeneracy of J ; ,  
First from (IO), (13a) and (13b) ,  one finds 

(A961 

('48) 

= (DTPy+ n,n,ln2+ m,m, lm2)(Lu,  + n,np /n2+  m,m,/m') = S,, 

a"KabJ;  = aaJ;LWv = 0 

n,L,,J; = n,Jb,Kb" = O  (A9c) 

mvLv, J ;  = m,Jb,K = 0. (A9d) 
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In order to get rid of the matrices K and IL one can apply the previously defined 
matrices D2," (13a) and AYb (12a): 

aaJ; = aaJ:m,m,/m2+aaJ:n,n,/n2 (AlOa) 

n,J; = n,Jiaba"/a2 (AlOb) 
(AlOc) m,J: = m,J,a a / a 2 .  

n,L,, = n,J:Jz = n,JiabacJ', /a2 = 0 ( A l l a )  

m,L,, = m,J:J:= m,J:abacJ', /a2=0. ( A l l b )  

aaJ; = 0 (A12a) 

b b a  

Furthermore, from (AlOb, c) one easily obtains 

Thus there are two possibilities: either 

or 
(A12b) 

The first alternative, due to (AlOb) and (AlOc), immediately leads to the conclusion 
that equation (A12b) must also be satisfied. The second one, due to relation (AlOa), 
gives (A12a). Thus we have proved that even for a complex-valued external current 
the properties (A12a) and (A12b) are satisfied. 

So far the analysis has concerned the structure of JE;  now we should turn to the 
covariant conservation law. In order to find a suitable parametrisation of the gauge 
field potential A: let us study Sab and N "  defined by (7b) and (7c).  Due to the 
property (16c) we have 

A ~ J ~ a b = ( S a b + ~ " b c N c ) a b = O  (A13a) 
aaAb P P  J" = a a ( S a b  - E ~ ~ ~ N ~ )  = 0 (A13b) 

b b  b b  n,J,a =m,J,a = O .  

or, equivalently, 
= - & a b c a b N c  

a a ~ a b  = &abc b a N'. 

(A13a') 

(A13b') 

Thus we see that Sab and N" are not independent and only certain components of 
them can be taken as parameters of A:. It is useful to take the transversal matrix Syb 

and N "  as linearly independent quantities. The matrix Sab may be expressed as 
sab = ( a a c  - a a a c / a 2 ) S c d ( ~ d b - a d a b / a 2 ) + a a a C S c b / a 2 +  abadSad/a2  

sYb = (6 " ' -  aaaC/a2)Scd(6db  - a d a b / a 2 )  (17b)  

- a'a b /  a2acScdad /  a 2  

= S y b - a a & b c d a c N d / a 2 - a  a c d a c N d l a 2  (A14) 

('415) 

and accordingly 
( Sab + E ObcNc) Jby = { S y b  + ( aad + a " a d /  a') E ~ ~ ~ N ~ } J ~ ~ .  

Now we are in a position to write down a proper decomposition of A ; :  
A;  = (6 , , -m ,m, /m2-n ,n , /n2)A" ,AA",n , /n2n ,+A~m, /m2m,  

= D 2 , , J ~ J ~ A f ; + c r a n , + P " m ,  
= 

= a a m , , + p " n , + D 2 , Y { S ~ b + ( S a d  + a a a d / a 2 ) ~ d b c N c } J b y  
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where a", pa, are given by (17b) and (17c),  respectively. This completes our calcula- 
tions concerning the degenerate case of JF, when the matrix K has one zero eigenvalue. 
We would like to stress that Sab and N a  are mutually constrained and this phenomenon 
appears in both classes of degenerate external current. 

Now we turn to the last case when the matrix K has two zero eigenvalues. First, 
from the formulae ( A l a )  and ( A l b ) ,  we find that 

(A17a)  

(A17b)  

Det(Kab + anab + bobb)  = a2b2 Tr 06 # 0 

Det( L,, + n,n, + m,m, +p,py) = n2m2p2 Tr K # 0. 

Furthermore, we may define matrices 

( L,, + n p , /  n + m,mv/ m2 + p ,py /p2 )  ( NVp + n,n, I n + mvmpI m + pYpp / p 2 )  

and Dzab by the reciprocity relations 

= (D:,"+ n,nv/n2+ m,mylm2+P,P"IP2) 

x (L ,+n"n, ln2+m,mplm2+P"PpIP2)  = a,, ( A l g a )  

( K n b  + a " a b / a 2 +  b"bb/b2)(AP+ a b a c / a 2 +  bbb' /b2)  

= ( A : b + a a a b / a 2 +  b " b b / b 2 ) ( K b ' + a b a ' / a 2 + b b b ' / b 2 )  = 6"'. ( '4J8b)  
Proceeding in a similar manner to the previous case one may easily derive properties 
(19b),  (19c) and (21a-c). However, if one seeks the properties of J l  then one cannot 
imitate the steps from ( A 9 )  to (A12). Currently we must restrict the possible J l  to a 
real-valued function. Thus we take the obvious identities 

(A19a)  

(A19b)  

(A19c) 

m,L,,m, = m,Jlm,Jz = 0 

P.L,"PY = P,JlP,JE = 0 

(A19d)  

(A19e)  

and for real Euclidean vectors we conclude that J l  has the following properties: 

(22a)  

a " J l =  b"J: = 0. (22b) 

n J " = m  J " = p  J " E O  
P P  w ,  I r w  

Finally we would like to find a parametrisation of the gauge field A; that is suitable 
for solving equation ( 2 ) .  We notice that due to (22b) there are two basic constraints: 

(A20a)  

(A20b)  

A i J i a b  = ( S a b +  EabcNc)ab = 0 

A: J i b b  = (Sab + EabcNc)bb = 0. 

Because matrix Sob is symmetric 
aasabbb = b " S a b a b  

then from (A20a)  and (A20b)  we have 
(A20c) 

(A20d)  
For these observations one may deduce which parts of Sa' and N "  are not mutually 
constrained. First we notice that the longitudinal part of N" 

E a b c  (I b a b N'=O. 

NL" = abNb/a2a"  + bbNb/b2b" = n,a"+ n2b" (23c) 
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carries two degrees of freedom. Furthermore, by virtue of the above constraints one 
may choose a missing degree of freedom. We want to take S P b  defined by (23b) ;  
however, another choice is equally possible. Here we decompose Sab in terms of Spb 
and N L a :  

Sab = (8"' - a a a c / a 2 -  b"bc /b2)Scd(Sdb  - a d a b / a 2 -  b d b b / b 2 ) + a " a c S c b / a 2  

+ b"bcScb/ b2 + a ba dSad / a 2  + b bbdSad / b2 

- a "b / a' a 'SCdb / b2 - b "a / a b 'Scda / b2 

('421) 

(A221 

- - s,"b - ( a  a E  bcd + abEaCd)aCNLd - ( boE bcd + bbEaCd)bcNLd / b2 

and we write 

( Sab + E " ~ ~ N ' ) J ~ ,  = S,"'J: + ( S a d  + a a a d / a 2  + b"bd/  b2)EdbcNcJ:.  

This allows us to make the following decomposition of any A&:  

A;  = ( 6 , , - m , m , / m 2 - n , n , / n 2 - p , p , / p 2 ) A " , A ~ n , / n 2 n ,  

+A%,/ m2m, + A ~ P , / P ~ P ,  

= D,,,J&J:A; +cyan,  +Pam,  + y a p p  

= D 3 , u ( S a b + ~ " b c N c ) J ~ + c y a n r + ~ a m p +  y a p ,  

= D3,y{S,"b+(8ad + a a a d / a 2 + b " b d / b 2 ) ~ d b c N c } J ~ + c y a m p + ~ a n ,  + y a p p .  
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